481.5 675.9 643.5 870.4 643.5 643.5 546.3 611.1 1222.2 611.1 611.1 611.1 0 0 0 0 388.9 1000 1000 416.7 528.6 429.2 432.8 520.5 465.6 489.6 477 576.2 344.5 411.8 520.6 >> �gC�#G)aN�Uu,+;W8�P������֑�y��+��q���8��{*L�0��;�ѽ��*)�Q.P��t�GoE#6��E ��y6d.��4'ӪB��+�`�U��Bƒ�dZՅPa2���(܏i��ebeC�H�r7܏j��i�ec�HǕL��}to^">D��i� ǻ!�Q�V6'ӪB�8$�p����S��lH08�m���.D�al�Xk��7n�2��pXi���=8�4��pX� p�q�7��Ӈh�Ḯ���!�Q��:̈́�9ժB��+p,�{���P�D ��T��BpX� ���%�D�ha8�t���S���D�a�㺭\V�ԼI��-�pd��`l�(�.���.n�]����ҭ"Tէu������u:z�sӡZ3��MZ���ۺ��4�%��*#Vu_[i(��]�4bU�u�������o ޤU|���0uγ!����&N�U�,,pS�l 5�9���x-_=8��s�6 A standard normal table (also called the unit normal table or z-score table) is a mathematical table for the values of ϕ, indicating the values of the cumulative distribution function of the normal distribution. From the z score table, the fraction of the data within this score is 0.8944. Z is the standard normal random variable. /FontDescriptor 8 0 R A standard normal table (also called the unit normal table or z-score table) is a mathematical table for the values of ϕ, indicating the values of the cumulative distribution function of the normal distribution. The z-score can be calculated by subtracting mean by test value and dividing it by standard value. 750 758.5 714.7 827.9 738.2 643.1 786.2 831.3 439.6 554.5 849.3 680.6 970.1 803.5 /LastChar 196 �CF���>��"�^T���Hgx��&�C��,8�Z)�8a%Z8�Y�����1�,,pH\��5?�� �!jx5�p�r��|�I����p� ������� �D������4��H- �FZ��kB|w�I��-ptS��j���[U��� G7U��P�X�W� The table utilizes the symmetry of the normal distribution, so what in fact is given is. /Length 6864 Positive Z Score Table: It means that the observed value is above the mean of total values. endobj *�݋ �al"�D�#ʄʆ���/o�ibec�H�kga#`�(�Y�!X�hG��!�q]Ȫ\'�*B�8$�p���^6�j G�vzpL���68��%�D�ha8�t��M(ޣ�&Z�>��]�޳�!Zv8F>*.p� �q-_� '�*:��� �+l���p?‰����9h� �BhL�F�W+"L�0F��Qc4Q&RT�����u��!P��&���xu�8q%�B��W8 R����6v���欄�e1�6����H�7��� *vóÖíÀ°Ÿ.ò#‹‡‡W†×¯¯Ş]ÿëí ‡7o~x{½¹º¾QÃİ#ı=ş76W¿ì¾Ü>íÿÚ]?|y8ì¿î�û»á°ß\ıó‡?n~Øn®¶[;À°ı¼?§?”œÖÂëaûuóbx¹ısóãvóã;éyp8 Nß#ñ. 384.3 611.1 611.1 611.1 611.1 611.1 896.3 546.3 611.1 870.4 935.2 611.1 1077.8 1207.4 This can be used to compute the cumulative distribution function values for the standard normal distribution . Negative Z Score Table: It means that the observed value is below the mean of total values. CBSE Previous Year Question Papers Class 10, CBSE Previous Year Question Papers Class 12, NCERT Solutions Class 11 Business Studies, NCERT Solutions Class 12 Business Studies, NCERT Solutions Class 12 Accountancy Part 1, NCERT Solutions Class 12 Accountancy Part 2, NCERT Solutions For Class 6 Social Science, NCERT Solutions for Class 7 Social Science, NCERT Solutions for Class 8 Social Science, NCERT Solutions For Class 9 Social Science, NCERT Solutions For Class 9 Maths Chapter 1, NCERT Solutions For Class 9 Maths Chapter 2, NCERT Solutions For Class 9 Maths Chapter 3, NCERT Solutions For Class 9 Maths Chapter 4, NCERT Solutions For Class 9 Maths Chapter 5, NCERT Solutions For Class 9 Maths Chapter 6, NCERT Solutions For Class 9 Maths Chapter 7, NCERT Solutions For Class 9 Maths Chapter 8, NCERT Solutions For Class 9 Maths Chapter 9, NCERT Solutions For Class 9 Maths Chapter 10, NCERT Solutions For Class 9 Maths Chapter 11, NCERT Solutions For Class 9 Maths Chapter 12, NCERT Solutions For Class 9 Maths Chapter 13, NCERT Solutions For Class 9 Maths Chapter 14, NCERT Solutions For Class 9 Maths Chapter 15, NCERT Solutions for Class 9 Science Chapter 1, NCERT Solutions for Class 9 Science Chapter 2, NCERT Solutions for Class 9 Science Chapter 3, NCERT Solutions for Class 9 Science Chapter 4, NCERT Solutions for Class 9 Science Chapter 5, NCERT Solutions for Class 9 Science Chapter 6, NCERT Solutions for Class 9 Science Chapter 7, NCERT Solutions for Class 9 Science Chapter 8, NCERT Solutions for Class 9 Science Chapter 9, NCERT Solutions for Class 9 Science Chapter 10, NCERT Solutions for Class 9 Science Chapter 12, NCERT Solutions for Class 9 Science Chapter 11, NCERT Solutions for Class 9 Science Chapter 13, NCERT Solutions for Class 9 Science Chapter 14, NCERT Solutions for Class 9 Science Chapter 15, NCERT Solutions for Class 10 Social Science, NCERT Solutions for Class 10 Maths Chapter 1, NCERT Solutions for Class 10 Maths Chapter 2, NCERT Solutions for Class 10 Maths Chapter 3, NCERT Solutions for Class 10 Maths Chapter 4, NCERT Solutions for Class 10 Maths Chapter 5, NCERT Solutions for Class 10 Maths Chapter 6, NCERT Solutions for Class 10 Maths Chapter 7, NCERT Solutions for Class 10 Maths Chapter 8, NCERT Solutions for Class 10 Maths Chapter 9, NCERT Solutions for Class 10 Maths Chapter 10, NCERT Solutions for Class 10 Maths Chapter 11, NCERT Solutions for Class 10 Maths Chapter 12, NCERT Solutions for Class 10 Maths Chapter 13, NCERT Solutions for Class 10 Maths Chapter 14, NCERT Solutions for Class 10 Maths Chapter 15, NCERT Solutions for Class 10 Science Chapter 1, NCERT Solutions for Class 10 Science Chapter 2, NCERT Solutions for Class 10 Science Chapter 3, NCERT Solutions for Class 10 Science Chapter 4, NCERT Solutions for Class 10 Science Chapter 5, NCERT Solutions for Class 10 Science Chapter 6, NCERT Solutions for Class 10 Science Chapter 7, NCERT Solutions for Class 10 Science Chapter 8, NCERT Solutions for Class 10 Science Chapter 9, NCERT Solutions for Class 10 Science Chapter 10, NCERT Solutions for Class 10 Science Chapter 11, NCERT Solutions for Class 10 Science Chapter 12, NCERT Solutions for Class 10 Science Chapter 13, NCERT Solutions for Class 10 Science Chapter 14, NCERT Solutions for Class 10 Science Chapter 15, NCERT Solutions for Class 10 Science Chapter 16, Important Questions Class 9 Maths Chapter 3 Coordinate Geometry, CBSE Previous Year Question Papers Class 12 Maths, CBSE Previous Year Question Papers Class 10 Maths, ICSE Previous Year Question Papers Class 10, ISC Previous Year Question Papers Class 12 Maths. Title: Cumulative Normal Distribution Table Author: Society of Actuaries Subject: View the cumulative normal distribution table. *�%�pt�a� SA���C�([L��]Y�0_�p:T���䑊d���)܋�/��ZZ0?����'����H� Table 1: Table of the Standard Normal Cumulative Distribution Function '(z) z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 -3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 -3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 753.7 1000 935.2 831.5 17 0 obj 639.7 565.6 517.7 444.4 405.9 437.5 496.5 469.4 353.9 576.2 583.3 602.5 494 437.5 A z score is simply defined as the number of standard deviation from the mean. 384.3 611.1 675.9 351.8 384.3 643.5 351.8 1000 675.9 611.1 675.9 643.5 481.5 488 It is used to find the probability that a statistic is observed below, above, or between values on the standard normal distribution, and by extension, any normal distribution. A z-score equal to 0 represents an element equal to the mean. 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 777.8 500 777.8 500 530.9 Required fields are marked *. ��Є��ȁ�.6VX��Eؽ:X��t�Ȃ�X8,�Q�YT��Ae! 12 0 obj 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 It is a way to compare the results from a test to a “normal” population. ��ŏK�M��2Ѳ��a4$G�&�"M�lp��šÊ&t7�&>D�G���y6$8z�:��K����e�C� /Name/F2 << Solution: The z score for the given data is. The cumulative distribution function is given by: Φ z ex dx z z ( )= −∞< <∞ −∞ 1 ∫ 2 2 2 π, . 805.5 896.3 870.4 935.2 870.4 935.2 0 0 870.4 736.1 703.7 703.7 1055.5 1055.5 351.8 ���P�wc�@J*��!.D�al���U��2��p�O�cL��G����J��F �0�*M}����L��lHp\�,N�Ut,+;W8�P��� �L�Ш�K�� �Bh�KE�m@VD�Pa2P����ŝ��2��`���1w�@.�El���t^� �x7d.��9�N�U�,(+�p��W)o:!���r�Ap^�UB�� ��`� ��Π���ʆ����؛S"����J��&����W׍ǩsV�������v�`�v^_��h:�d��)T��D���[��� 896.3 896.3 740.7 351.8 611.1 351.8 611.1 351.8 351.8 611.1 675.9 546.3 675.9 546.3 :"����X� "շ��ui8p5oN2������I�]�2����U�8�T��Uo�:m���DEKGC,^툊�څ /Type/Font �3j�D�".D�alpڗsN�V=[e��JC NՅ�۪g+�p�W�@����'����m��v��TL��lHp��Uϧ�nU!����8��5S>O�J��ѩzV���@���ݜܳ7�e���Ґͭ:OwU�ha8�t��zs��w�ٛs����0��������EQ����MQ���� -�z&HD��j��b4�p�f���J��m�g|�b����p?/�z�� e�ЅxJ�^�T�E�*8K7���MI�k,ɽ߈ɂ�>�i��]t 0�2m�:�ѱ|�. Your email address will not be published. ®üJşã#–™™Sâuk¬È>v|ȳóW Áµm� Created Date: 11/13/2009 10:40:59 AM /BaseFont/GMBPWN+CMMI10 �m��3bb1! �x5$8Bzչ��xN����e�C� Z-Score, also known as the standard score, indicates how many standard deviations an … xڕ�M��q����r�M|Y:�R�E6�]��G��4v�#%U��!�E7N�'�Jë�9/��@���q���������o?����c���?|�|���mMG���ϟ>�ӧ���ӿ}�mJ�S��o�͹�G��/?��M�~������������z�O���z���~��Ml�~�������_S�w?��������_����������*��O�%���7����]\t�����|������Чr�2�����������?����#��o�8Z����~�$�?